
Azure SignalR Service

Almir Vuk

Software Engineer & Microsoft MVP
AgentLocator Inc.

👋 I am Software Development Engineer and

Microsoft MVP working with .NET and C#, crafting

apps with ASP.NET Core for Web and Xamarin for

mobile. Currently part of AgentLocator Inc.

Spending free time, running, playing chess, speaking

on conferences, answering questions StackOverflow

and committing to open-source projects on GitHub.

almirvuk.com

@almirvuk

Almir Vuk

ASP.NET Core SignalR and Azure

ASP.NET Core SignalR is an open-source library that simplifies
adding real-time web functionality to apps.

Real-time web functionality enables server-side code to push
content to clients instantly.

ASP.NET Core SignalR

Good candidates for SignalR:

• Apps that require high frequency updates from the server. Examples
are gaming, social networks, voting, auction, maps, and GPS apps.

• Dashboards and monitoring apps.
Examples include company dashboards, instant sales updates, or travel
alerts.

• Collaborative apps. Whiteboard apps and team meeting software are
examples of collaborative apps.

• Apps that require notifications. Social networks, email, chat, games,
travel alerts, and many other apps use notifications.

Client Negotiation

Got Data?

Got Data?

Got Data

Got Data?

Got Data?

Got Data?

Got Data?

Got Data?

Here’s some data!

Client Negotiation

I do real time, do you?

Totally!

Let’s party in real time!

Transports

• SignalR supports the following techniques for handling real-time
communication (in order of graceful fallback):
• WebSockets

• Server-Sent Events

• Long Polling

• SignalR automatically chooses the best transport method that is
within the capabilities of the server and client.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/websockets?view=aspnetcore-6.0

Web Sockets

It is a protocol which provides a full-duplex communication
channel over a single TCP connection.

For instance a two-way communication between the Server
and Browser.

Since the protocol is more complicated, the server and the
browser has to rely on library of websocket which is SignalR in
.NET world.

Hello World example

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 services.AddSignalR()
 .AddAzureSignalR();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 app.UseMvc();
 app.UseFileServer();

 app.UseAzureSignalR(routes =>
 {
 routes.MapHub<Chat>("/chat");
 });
 }
}

Hubs

• SignalR uses hubs to communicate between clients and servers.

• The SignalR Hubs API enables connected clients to call methods on the
server. The server defines methods that are called from the client and the
client defines methods that are called from the server. SignalR takes care of
everything required to make real-time client-to-server and server-to-client
communication possible.

public class Chat : Hub
{
 public void BroadcastMessage(string name, string message)
 {
 Clients.All.SendAsync("broadcastMessage", name, message);
 }

 public void Echo(string name, string message)
 {
 Clients.Client(Context.ConnectionId).SendAsync("echo", name,
 message + " (echo from server)");
 }
}

function bindConnectionMessage(connection) {

 var messageCallback = function (name, message) {

 if (!message) return;
 alert("message received:" + message);
 };

 // Create a function that the hub can call to broadcast messages.
 connection.on('broadcastMessage', messageCallback);
 connection.on('echo', messageCallback);

}

var connection = new signalR.HubConnectionBuilder()
.withUrl('/chat')
.build();

bindConnectionMessage(connection);

connection.start()
 .then(function () {
 onConnected(connection);

})

 .catch(function (error) {
 console.error(error.message);

});

Client Targeting with SignalR Hubs

Scott

(PM)

Jack

(Dev)

Mary

(PM)

Send messages to clients

• To make calls to specific clients, use the properties of the Clients object.

There are three hub methods:

• SendMessage sends a message to all connected clients, using Clients.All.

• SendMessageToCaller sends a message back to the caller, using Clients.Caller.

• SendMessageToGroup sends a message to all clients in the SignalR Users group.

Client Targeting with SignalR Hubs

Scott

(PM)

Jack

(Dev)

Mary

(PM)

Clients.All.SendAsync(...)

Client Targeting with SignalR Hubs

Scott

(PM)

Jack

(Dev)

Mary

(PM)

Clients.Caller.SendAsync(...)

Client Targeting with SignalR Hubs

Scott

(PM)

Jack

(Dev)

Mary

(PM)

Clients.Groups(''Dev'').SendAsync()

...now the interesting
part begins😂

SignalR Hubs are Server-bound

SignalR Hubs are Server-bound

SignalR Hubs are Server-bound

So, does SignalR not work in a server farm?

Once you add a backplane, yes!
S
ig

n
a
lR

B
a
ck

p
la

n
e

First issue? … Scale out

An app that uses SignalR needs to keep track of all its

connections, which creates problems for a server

farm.

Add a server, and it gets new connections that the
other servers don't know about.

For example, SignalR on each server in the following

diagram is unaware of the connections on the other

servers.

When SignalR on one of the servers wants to send a

message to all clients, the message only goes to the

clients connected to that server.

Solution? … Load balancers and sticky session

When the app runs in the cloud scaling out is a matter of setting the

number of servers you want to run.

A mechanism called a load balancer will then pick a server on each

incoming request.

The load balancer can pick a different server in sequence or have some

other logic going on to pick one.

Load balancers and sticky session

We can solve this problem by using sticky sessions.

There are several implementations of this but most of the time it works

as follows.

As part of the response of the first request the load balancer sets a

cookie in the browser indicating the server that was used.

On subsequent requests the load balancer then reads the cookie and

assigns the request to the same server.

Load balancers and sticky session

The IIS and Azure web apps version of sticky sessions
is called Application Request Routing Affinity or ARR
Affinity.

Since SignalR could use non-websocket transports
you should turn this on on all servers where your
application is on. When using an on-premise server
with IIS install the ARR Affinity module.

… But there’s another problem.

Let’s say a user is working on a web document using Office 365 and she invites others to join

her.

The other might end up at server. Now when the user on server 1 changes the document a

message has to be sent to the others.

But server 1 doesn’t know about users that are connected to hubs in other servers.

To solve this the servers need a way to share data.

Redis backplane

Redis is an in-memory key-value store that

supports a messaging system with a

publish/subscribe model. The SignalR Redis

backplane uses the pub/sub feature to forward

messages to other servers.

When a client makes a connection, the connection

information is passed to the backplane. When a

server wants to send a message to all clients, it

sends to the backplane.

The backplane knows all connected clients and

which servers they're on. It sends the message to all

clients via their respective servers.

https://redis.io/

Azure SignalR Service

Azure SignalR Service

Azure SignalR Service is designed for large-scale real-time applications.

Azure SignalR Service allows multiple instances to work together to

scale to millions of client connections. The service also supports multiple

global regions for sharding, high availability, or disaster recovery

purposes.

Azure SignalR Service

Azure SignalR Service is designed for large-scale real-time applications.

It is common to scale SignalR with SQL Server, Azure Service Bus, or Azure Cache

for Redis. Azure SignalR Service handles the scaling approach for you.

The performance and cost is comparable to these approaches without the

complexity of dealing with these other services.

All you have to do is update the unit count for your service. Each unit supports

up to 1000 client connections.

Azure SignalR Service
One of the key reasons to use the Azure SignalR Service is
simplicity.

With Azure SignalR Service, you don't need to handle
problems like performance, scalability, availability. These
issues are handled for you with a 99.9% service-level
agreement.

Usage of SignalR Service in Web App

var builder = WebApplication.CreateBuilder(args);​
builder.Services
 .AddSignalR()​
 .AddAzureSignalR();​

var app = builder.Build();​

app.UseDefaultFiles();​
app.UseRouting();​
app.UseStaticFiles();​
app.MapHub<ChatSampleHub>("/chat");​
app.Run();​

Azure SignalR Service

Client App Server

Azure
SignalR
Service

1. Authenticate and connect to App4. Send “Redirect” Response with Auth Token and URL

Getting started with SignalR Service

Getting started with SignalR Service

A unit is a sub-instance

that processes your

SignalR messages.

Units are used to

increase the

performance and

connections count.

Getting started with SignalR Service

Service Mode

 Default

 Serverless

Service Mode - Default

 Default mode is the default value for service mode when you create a

new SignalR resource. In this mode, your application works as a typical

ASP.NET Core (or ASP.NET) SignalR application, where you have a web

server that hosts a hub (called hub server hereinafter) and clients can

have duplex real-time communication with the hub server.

The only difference is instead of connecting client and server directly,

client and server both connect to SignalR service and use the service

as a proxy.

Service Mode - Default

Service Mode - Serverless (no upstream)

Serverless mode, as its name implies, is a mode that you cannot have

any hub server.

Comparing to default mode, in this mode client doesn't require hub

server to get connected.

All connections are connected to service in a "serverless" mode and

service is responsible for maintaining client connections like handling

client pings (in default mode this is handled by hub servers).

Service Mode - Serverless (no upstream)

Therefore there is also no connection routing and server-client

stickiness.

The clients have persistent connections to Azure SignalR Service. Since

there is no application server to handle traffic, clients are

in LISTEN mode, which means they can only receive messages but can’t

send messages.

SignalR Service will disconnect any client who sends messages because

it is an invalid operation

Service Mode - Serverless (no upstream)

Service Mode - Serverless (upstream)

Therefore there is also no connection routing and server-client

stickiness.

The clients have persistent connections to Azure SignalR Service. Since

there is no application server to handle traffic, clients are

in LISTEN mode, which means they can only receive messages but can’t

send messages.

SignalR Service will disconnect any client who sends messages because

it is an invalid operation

Service Mode - Serverless

Can I send message from client in serverless mode?

 You can send message from client if you configure upstream in your

SignalR instance. Upstream is a set of endpoints that can receive

messages and connection events from SignalR service.

If no upstream is configured, messages from client will be ignored.

 For more information about upstream, see Upstream settings.

 Upstream is currently in public preview.

https://docs.microsoft.com/en-us/azure/azure-signalr/concept-upstream

Azure SignalR Service – Serverless (no upstream)

Pros:

 The client connects to the SignalR Serivce directly

Cons:

 The client can only receives messages, and can’t send

message to the SignalR Service.

Azure SignalR Service – Serverless (upstream)

 Pros:
 As the serverless mode, the client connection connects to the SignalR Service directly.

 With the Upstream, the client can also send messages to the SignalR Service.

 Cons:
 Compare with the default mode, the upstream server is used to receive the message, but not to

store the client’s status. The upstream server is stateless.

For homework

 http://dontcodetired.com/blog/post/Using-the-Azure-SignalR-Service-

Bindings-in-Azure-Functions-to-Create-Real-time-Serverless-

Applications

http://dontcodetired.com/blog/post/Using-the-Azure-SignalR-Service-Bindings-in-Azure-Functions-to-Create-Real-time-Serverless-Applications
http://dontcodetired.com/blog/post/Using-the-Azure-SignalR-Service-Bindings-in-Azure-Functions-to-Create-Real-time-Serverless-Applications
http://dontcodetired.com/blog/post/Using-the-Azure-SignalR-Service-Bindings-in-Azure-Functions-to-Create-Real-time-Serverless-Applications

Thank you!

Almir Vuk
almirvuk@outlook.com

almirvuk.com | @almirvuk

Thank you!

	Slide 1: Azure SignalR Service
	Slide 2
	Slide 3: ASP.NET Core SignalR and Azure
	Slide 4: ASP.NET Core SignalR
	Slide 5: Client Negotiation
	Slide 6: Client Negotiation
	Slide 7: Transports
	Slide 8: Web Sockets
	Slide 9: Hello World example
	Slide 10
	Slide 11: Hubs
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Client Targeting with SignalR Hubs
	Slide 16: Send messages to clients
	Slide 17: Client Targeting with SignalR Hubs
	Slide 18: Client Targeting with SignalR Hubs
	Slide 19: Client Targeting with SignalR Hubs
	Slide 20
	Slide 21: SignalR Hubs are Server-bound
	Slide 22: SignalR Hubs are Server-bound
	Slide 23: SignalR Hubs are Server-bound
	Slide 24: So, does SignalR not work in a server farm?
	Slide 25: Once you add a backplane, yes!
	Slide 26: First issue? … Scale out
	Slide 27: Solution? … Load balancers and sticky session
	Slide 28: Load balancers and sticky session
	Slide 29: Load balancers and sticky session
	Slide 30
	Slide 31: Redis backplane
	Slide 32: Azure SignalR Service
	Slide 33: Azure SignalR Service
	Slide 34: Azure SignalR Service
	Slide 35: Azure SignalR Service
	Slide 36: Usage of SignalR Service in Web App
	Slide 37: Azure SignalR Service
	Slide 38
	Slide 39: Getting started with SignalR Service
	Slide 40: Getting started with SignalR Service
	Slide 41: Getting started with SignalR Service
	Slide 42: Service Mode
	Slide 43: Service Mode - Default
	Slide 44: Service Mode - Default
	Slide 45: Service Mode - Serverless (no upstream)
	Slide 46: Service Mode - Serverless (no upstream)
	Slide 47: Service Mode - Serverless (no upstream)
	Slide 48: Service Mode - Serverless (upstream)
	Slide 49: Service Mode - Serverless
	Slide 50: Can I send message from client in serverless mode?
	Slide 51: Azure SignalR Service – Serverless (no upstream)
	Slide 52: Azure SignalR Service – Serverless (upstream)
	Slide 53: For homework
	Slide 54
	Slide 55

