Ta spletna stran hrani piškotke, da bi vam zagotovili boljšo uporabniško izkušnjo in popolno funkcionalnost te strani.

Analitične piškotke uporabljamo s storitvijo Google Analytics, samo z vašo privolitvijo. Sprejemam Zavrnitev Več informacij

petek, 03. maj 2019

Softline | Neuronet for Benefit of Customer

A loyal customer means higher profit. Do you know that, according to researches, 86% customers are ready to pay for better service? This is precisely why, as Gartner reports, in 2017 50% of B2C investment projects have been aimed at development of customer experience. And many of the existing customer loyalty assessment systems do not meet the companies’ needs.

Most quality assessment systems as phone surveys, test purchase, loyalty button, commercial SMS messages and emailing do not ensure 100% coverage of customers, do not provide information on customer loyalty motives, and bother customers with extra surveys. What can be the answer to these challenges? Video analytics and neuronet.

Simpler But Much Better

Scenarios of using video analytics systems are broad-ranging and are based on super useful functionality: detecting and tracking certain objects, identifying and classifying objects by predetermined criteria, recognizing emergency situations.

Smart machines have learned to understand the emotions of people for a while. For example, American Emotient, currently owned by Apple, wrote the advanced software for Google Glass back in 2014 (unadvanced one, a little bit earlier). Affectiva, Realeyes, Beyond Verbal can analyze speech, recorded or live, very well. There are systems, which use video stream directly from the employee’s workplace in the background, analyses information using neural networks and receives real-time customer services quality assessment, business process analysis, cross-sell control. And all these are achieved with high-quality audio and video recording and simple integration to the employee’s computer.

How It Works

The system detects emotions via webcam. It does this by the pitch of a voice and facial expression, and it understands the dialogue content as well by recognizing key words. The customer satisfaction rating is made based on the five basic parameters, including intonations and dialogue content, positive mimic emotions, negative mimic emotions, and attention.

Public services, banks, stores, and sales offices, transport enterprises, restaurants, automobile sales centers, clinics, insurance and travel agencies, cinemas, repair shops, museums are already using such systemsin Eastern Europe. And across the globe, the application of neuronets in the customer service is much wider.

Smart Service Features

Features may be provisionally divided into two categories. The first category is aimed at employees, and the second one deals with customers. Both are important and interrelated. “Internal” features include ranking of employees by the service quality and load; real-time reviewing of the customer service process, monitoring of compliance with a script; assessing peak loads and downtimes; recording dialogues for various purposes, collecting data on dialogue number and duration; notifying of front-line events.

Customer “focus” functionality means, for example, defining the customer profile (sex and age); analyzing words and phrases provoking negative and positive emotions of customers; conducting targeted product campaigns, demonstrating target media content, advertisements; analyzing the reaction of a customer to special offers, promotions, discounts; indexing key words by use frequency, and many other things.

Invisible Observer

People are just working, and the neuronet monitors and continuously analyzes what is going on to the fullest extent. As a result, a huge amount of precious analytical data is received: results may be filtered and viewed at different levels: for example, at the level of a certain customer, employee, business process, office, and the entire company. The analysis is performed based on the internal algorithm and objective estimation. What is particularly important is that such systems do not distract the employees, depersonalize and encode data, may be integrated with CRM and ERM.

The use of the abovementioned solution may be given as an example of application of such solutions in business. This solution is used by a company operating in the tourism industry, being a representative of the large business, and facing the challenge to increase sales and customer loyalty. Thanks to analytics based on data from neuronets, sales of insurance policies grew by 5%, sales funnel expanded, and customer satisfaction indicators increased by 19%.

In 2017, the automated emotion detection system was installed in the Reutov Multifunctional Center in order to collect data on the customer service quality. Webcams monitor the applicants’ emotions, voices, face expression, and speech content on a real-time basis, and the resulting analytical data are converted into the report for the management. It becomes clear at once what may be improved and where such improvements should be introduced!


If you are interested in optimizing your customer service with the use of neuronet to provide better services to your customer contact us at info@softline.si, and we are happy to provide you further detailes on the solution!

Za več informacij nam pišite na e-naslov info@ntk.si ter se nam pridružite na naših družbenih medijih Facebook, YouTube, Instagram in Twitter.